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Abstract 

This article addresses the didactical effects of CAS assisted proofs in Danish upper 

secondary mathematics textbooks as a result of the 2005 reform that introduced CAS 

as a part of the upper secondary level curriculum (and examinations). Based on a 

reading of 33 upper secondary school mathematics textbooks, 38 instances of CAS 

assisted proofs are identified in ten different textbooks. The CAS based proofs in these 

textbooks are of three types: complete outsourcing of the proof to CAS; partial 

outsourcing of the proof to CAS; and additional verification of the proof’ correctness 

by CAS. The analyses draw on theoretical constructs related to both proofs and 

proving (e.g. proof schemes) and to use of digital technologies in mathematics 

education (lever potential, blackboxing, instrumental genesis). In particular, the 

analyses make use of a distinction between epistemic, pragmatic and justificational 

mediations. Results suggest both potential problems with using CAS as an integrated 

part of deductive mathematical proofs in textbooks, since it appears to promote 

undesired proof schemes with the students, and difficulties with understanding these 

problems using the constructs of epistemic and pragmatic mediations that are often 

adopted in the literature regarding CAS use in mathematics teaching and learning.  

Keywords: Mathematical proof, CAS assisted proofs, proof schemes, instrumental 

genesis, justificational mediations 
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Resumen 

Este artículo aborda los efectos didácticos de las demostraciones asistidas por CAS 

en los libros de texto daneses de matemáticas de secundaria superior. A partir de la 

lectura de 33 libros de texto de matemáticas de secundaria superior, se identifican 38 

casos de pruebas asistidas por CAS en diez libros diferentes. Las pruebas basadas en 

CAS en estos libros son de tres tipos: externalización completa de la prueba a CAS; 

externalización parcial de la prueba a CAS; y verificación adicional de la corrección 

de la prueba en CAS. Los análisis se basan en construcciones teóricas relacionas tanto 

con las demostraciones como con las pruebas (por ejemplo, esquemas de 

demostración) y con el uso de tecnologías digitales en la educación matemática. Los 

análisis hacen uso de una distinción entre mediaciones epistémicas, pragmáticas y 

justificativas. Los resultados sugieren problemas potenciales con el uso de CAS como 

parte integrada de pruebas matemáticas deductivas en los libros de texto, ya que 

parecen promover esquemas de demostración no deseados en los estudiantes, así 

como dificultades para comprender estos problemas usando las construcciones de 

mediaciones epistémicas y pragmáticas que a menudo se adoptan en la literatura sobre 

el uso de CAS en la enseñanza y aprendizaje de las matemáticas. 

Palabras clave: Demostraciones matemáticas, demostraciones asistidas por CAS, 

esquemas de demostración, génesis instrumental, mediaciones justificativas 
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s part of a reform of the Danish upper secondary school in 2005, 

CAS entered in at all levels of the upper secondary mathematics 

program. It entered into the final written national examinations, into 

the classroom teaching and into the textbooks. Except for a few 

guiding remarks in the ministerial regulations (UVM, 2013) that the role of 

CAS was not only to be a tool for solving problems, etc. but also an 

instrument for underpinning conceptual understanding, the actual 

implementation of CAS into the mathematics program was pretty much left 

up to the schools, the teachers, and not least the textbook authors. This left 

the textbook authors of more than one textbook system to invent the notion 

of “CAS proofs”1 - or “CAS assisted proofs” as termed by Dana-Picard 

(2005). Of course, the notion of computer-assisted proofs has been around 

for a while in the discipline of mathematics, e.g. the proof for the four-color 

problem (Appel & Haken, 1977). But a Computer Algebra System (CAS) 

assisted proof is something quite different. As an example, take the following 

one from a third and final year upper secondary mathematics textbook. The 

theorem (“sætning”) to be proved is that “The functions cosine and sine are 

differentiable in every real number x, and cos’(x) = - sin(x), sin’(x) = cos(x).” 

(Clausen, Schomacker & Tolnø, 2007, p. 12). As for the “proof” the authors 

write: “We provide a CAS proof, cf. figure 109”, i.e. a screenshot from what 

appears to be a TI-89.  

 

 

 

 

 

 

 

 

Figure 1. “We provide a CAS-proof…” (Clausen, Schomacker & Tolnø, 2007, 

p. 13).2  

 

 Dana-Picard (2005) argues that CAS can indeed be a legitimate part of 

the process of proving an abstract theorem, and Elbaz-Vincent (2005) 

exemplifies how CAS may be a valuable assistant in students’ reasoning 

processes, not least in relation to symbolic integration. Still, neither seems to 

be the case in the example above, where no means for reasoning and 

A 
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explanation whatsoever are provided for the students, and where the entire 

act of “proving” is outsourced to the CAS tool. Rather what seems to be going 

on is that the CAS carries out all reasoning for the students, which does not 

support the development of mathematical reasoning abilities. 

 Eventually “proofs” like that above led us to dig deeper into the Danish 

upper secondary school textbooks’ use of CAS in relation to proofs and 

proving activities. Besides examples of “proofs” as that above, we found 

examples of intermediate steps of a proof, e.g. involving algebraic 

manipulations, reductions, etc. being outsourced to CAS. In some instances, 

this might appear to serve a didactical purpose, but we also found instances 

where steps rather crucial for the understanding of the proof were outsourced 

to CAS. Furthermore, we saw several instances where a use of CAS was sort 

of “added on” to a traditional proof in order to play the role of an “authority” 

upon which the correctness of traditional proofs was valued or judged. The 

current article offers an in-depth analysis of such CAS assisted proofs in 

mathematics textbooks for Danish upper secondary school. As part of this 

study we draw on selected constructs from research on proof and proving in 

mathematics education (e.g. the notion of proof schemes) and from research 

on digital technologies in the teaching and learning of mathematics (e.g. lever 

potential and blackboxing). In particular we also draw on the framework of 

instrumental genesis and the notion of epistemic and pragmatic value of CAS 

use. Following the terminology from Rabardel we distinguish epistemic and 

pragmatic mediations to describe different use of technology (Rabardel & 

Bourmaud, 2003). Due to the nature of the investigation at hand and the 

empirical data from textbooks, we have come to augment this framework 

with a third kind of mediations; justificational mediations (Misfeldt & 

Jankvist, 2018; Jankvist, Misfeldt & Aguilar, in press). But before getting to 

that we first account for our quantitative analysis of Danish upper secondary 

school mathematics textbooks. 

 

CAS in Danish Upper Secondary School Mathematics Textbooks 

In order to find out how and to what extent CAS is used in Danish 

mathematics textbooks for upper secondary school, we have read through 33 

of the most popular textbooks for upper secondary school looking for how 

CAS is used. Danish upper secondary school encompasses three different 

streams: the classical stream (stx); the technical stream (htx); and the 



 Jankvist & Misfeldt–CAS Assisted Proofs  

 

 

234 

 

business stream (hhx). Our selection includes textbooks from all three 

streams. 

 CAS is an integral part of Danish upper secondary mathematics 

education. Hence, it is expected that all textbooks relate to CAS to some 

extent.  What we found, however, is a great diversity in how much and for 

what purposes CAS is being used. Looking at the Danish textbooks, we see 

books that barely use CAS and books with almost a hundred instances of 

CAS use. In total we found 754 instances of CAS use in the 33 books. 

Initially we discriminated these instances into CAS use: in proofs; in relation 

to conceptual exploration and explanation; in introductory sections (e.g. 

introducing a new chapter); in macros where CAS techniques are described; 

and in examples (see table 1 and appendix A for a full description of and 

reference to the analyzed sources). 

 

Table 1.  

Number of uses of CAS in 33 Danish upper secondary school mathematics 

textbooks. 

 

CAS in 

proofs 

CAS in 

conceptual 

work 

CAS in 

introductory 

text 

CAS in 

macros 

CAS in 

examples 

Other uses of 

CAS 

38 44 24 47 586 3 

 

 It is not surprising that the most typical use of CAS in the mathematics 

textbooks is in the examples. However, as seen from table 1, CAS is also 

used in proofs. In fact, almost a third of the analyzed textbooks make use of 

CAS in proofs. As already hinted to, the CAS uses in proofs are of different 

types. In order to account for this, we first introduce the theoretical constructs 

underlying our pending analyses of these CAS assisted proofs. 

 

Theoretical Constructs Related to Proofs and Proving 

As aptly phrased by Duval (2007, p. 137), “Proof constitutes a crucial 

threshold in the learning of mathematics. Why do so many students not 

succeed in truly crossing it?” One reason is given by the Education 

Committee of EMS in their series of “Solid Findings” articles:  
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Mathematical thought concerning proof is different from thought in 

all other domains of knowledge, including the sciences as well as 

everyday experience; the concept of formal proof is completely 

outside mainstream thinking. Teachers of mathematics at all levels 

[…] thus require students to acquire a new, non-natural basis of 

beliefs when they ask them to prove… (Education Committee of 

EMS, 2011, p. 51) 

 Dreyfus makes the observation that: 
Indeed, research results on students’ conceptions of proof are 

amazingly uniform; they show that most high school and college 

students don’t know what a proof is nor what it is supposed to 

achieve. Even by the time they graduate from high school, most 

students have not been enculturated into the practice of proving, or 

even justifying the mathematical processes they use. (Dreyfus, 1999, 

p. 94) 

 Besides the differences to everyday reasoning, students’ difficulties with 

proof also stem from that they might never have been told what actually 

counts as a mathematical argument. According to Dreyfus, one reason is that 

in many textbooks “more or less formal arguments are used, together with 

visual or intuitive justifications, generic examples, and naive induction” but 

that “students are rarely if ever given any indications whether mathematics 

distinguishes between these forms of argumentation or whether they are all 

acceptable” (p. 97). Students, says Dreyfus, have only few if any means to 

distinguish between such different forms of argumentation. This is backed 

by Duval (2007, p. 159), who distinguishes two kinds of failures on students’ 

behalf: (1) “Dysfunctions in valid reasoning, such as status confusion, non-

distinction between a statement and its converse, etc.” (2) “Gaps of 

deficiencies in the progress of a proof”. (For Duval, “status confusion” also 

refers to the different status of statements within a proof, e.g. hypothesis, 

property, and conclusion.)  

 Taking a step back we might ask what the role and function of 

mathematical proof is in mathematics and in mathematics education. Clearly, 

the first thing that comes to mind is the verification of truth of a given 

statement (or theorem). De Villiers (1990) points out that although this is 

surely one purpose and function of mathematical proof, it is far from the only 

one - and not necessarily the most beneficial one from an educational 

perspective either. In fact, he points out five different functions of 

mathematical proof: (1) the above mentioned conviction and verification; (2) 
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as a means for explaining why a given mathematical result is true; (3) to 

systematize different mathematical results in deductive systems of axioms, 

concepts, theorems, etc.; (4) as a way of discovering new results and new 

knowledge in the already existing mathematical systems/theories; (5) and 

finally as a way of communicating mathematical knowledge. In particular the 

distinction between proofs that prove, and proofs that explain (and prove) is 

didactically crucial (Hanna, 1989). While the first kind only shows that a 

theorem is true, i.e. is concerned with substantiation, the second kind shows 

why a theorem is true, i.e. “it provides a set of reasons that derive from the 

phenomenon itself” (Hanna, 1990, p. 9). Or in the words of Steiner (1978, p. 

143), “an explanatory proof makes reference to a characterizing property of 

an entity or structure mentioned in the theorem, such that from the proof it is 

evident that the results depend on that property.” Technology used in proving 

activities obviously plays a potential part in increasing the distance between 

understanding and justification as e.g. argued by Tymoczko (1979) with 

reference to the classical proof of the four-color theorem. Proofs by brute 

(computer) force challenges the human involvement in the proving process, 

and hence also the human understanding. 

 Harel and Sowder (2007, p. 809) state that: “A person’s (or a 

community’s) proof scheme consists of what constitutes ascertaining and 

persuading for that person (or community).” Ascertaining is the process 

employed to remove one’s own doubts about the truth of an assertion, while 

persuading is the process employed to remove other’s doubts. According to 

Harel and Sowder, ascertaining and persuading are both subprocesses of the 

process of proving. Ascertaining and persuading are both entirely subjective, 

since one’s proving may vary from context to context, and proving may vary 

from person to person, or within a community over time. Hence, the above 

definition of a proof scheme. This also means that an individual may be 

convinced by other things concerning proof than the usual deductive 

reasoning patterns accepted within the field of mathematics. Harel and 

Sowder (2007) provide a taxonomy consisting of three overall classes of 

proof schemes: (1) external conviction proof schemes; (2) empirical proof 

schemes; (3) deductive proof schemes. The external conviction proof 

schemes may be expressed by an authoritarian proof scheme, e.g. that 

something is true because the teacher or the textbook says so; a ritual proof 

scheme, e.g. that a geometry proof must have a two-column format; or a non-

referential symbolic proof scheme, e.g. that a proof must contain symbols 
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and symbol manipulations. The empirical proof schemes come into play 

when using examples to justify the truth of general (universal) statements. 

As the reader might very well know, some students may be convinced of the 

correctness of a given mathematical relationship by means of two or three 

specific empirical examples or by what may be perceived as a “crucial” 

empirical example. Finally, the deductive proof schemes are those which we 

know from the discipline of mathematics, covering direct proof, including 

axiomatic proofs, proof by contradiction, induction proofs, combinatorial 

proofs, etc. (Harel and Sowder also subcategorize the empirical and the 

deductive proof schemes, but for the purpose of our pending analyses the 

above shall suffice.) In relation to technology use in proving there is an 

ongoing discussion if proofs which are strictly dependent on technology 

(such as the four-color theorem computer proof) maintain their a priori status 

(as claimed by McEvoy, 2008), or if they are similar to other external 

conviction arguments (as argued by Tymoczko, 1979). The discussion of 

apriority and fallibility of computer based techniques continues in relation to 

the emerging discipline of experimental mathematics (see Johansen and 

Misfeldt, 2016), where the dependence of, and benefits from, computer 

calculations, make it important to reflect upon the details of the interplay 

between mathematical thinking, computer calculations and secure 

mathematical knowledge (Borwein, 2005). 

 In the analyses to come we build on the distinction from Hanna (1990) 

between proofs that explain and proof that (only) prove, and on the concept 

of proof schemes from Harel and Sowder (2007). Hence, we talk about 

explanatory and justificatory functions of proofs as well as external 

conviction proof schemes, empirical proof schemes, and deductive proof 

schemes. And we do so together with selected central constructs related to 

the use of digital technology, in particular of course CAS, in mathematics 

teaching. We explain these next.   

 

Theoretical Constructs Related to the Use of CAS in Teaching 

There is an extensive literature about the use of CAS in mathematics 

education. However, not much of this literature relate to the development of 

students’ ability to proof. This does not mean that the knowledge about the 

influence from CAS on mathematical thinking, learning and teaching is 

without relevance to the present investigation. Recent reviews of CAS use in 
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education (Hoyles, 2014; Hoyles & Lagrange 2010; Laborde & Strässer, 

2010; Lavicza, 2010) point to the transformation of teaching and learning 

processes in mathematics that these technologies provide. In a sense CAS 

increases both the potentials and the problems that already exist in the 

teaching and learning of mathematics (Niss, 1999). Concerning technology 

in the teaching and learning of mathematics, Artigue states that 
what counts is the potential that CAS offers for obtaining results very 

quickly, for reconsidering a previous computation and substituting a 

parameter to a numerical value in it, and the help CAS can offer as 

assistants to computation and symbolic proofs for students with 

limited technical background. (Artigue, 2002, p 268)  

 Such “assistants” in relation to CAS in computation and symbolic proofs 

may be described, in particular, with the concepts of lever potential and 

blackboxing, which both address the way in which technology is able to assist 

teachers and students by handling technical operations that are redundant to 

mathematics learning. More precisely, the lever potential in a technology 

environment is the positive effects that CAS offers in terms of focusing the 

students’ attention on the most relevant activity (Dreyfus, 1994; Winsløw, 

2003). A use of technology as a lever potential can help save time, increase 

the mathematical capacity of each student, and focus activities in the 

classroom (Dreyfus, 1994). The lever potential works by outsourcing certain 

mathematical processes, and thus directing attention away from these 

processes. But such outsourcing is hard to control and can easily lead to 

problems with understanding what is actually going on, since it also involves 

blackboxing. This negative effect of outsourcing, i.e. blackboxing, is well 

described in the literature on CAS and mathematics learning (e.g. 

Buchberger, 2002; Lagrange, 2005), and so are the results of students who 

are able to perform CAS-based mathematical activities, but unable to 

understand the underlying processes (e.g. Jankvist & Misfeldt, 2015; 

Jankvist, Misfeldt & Marcussen, 2016; Jankvist, Misfeldt & Aguilar, 2019). 

Thus, blackboxing leaves students dependent on certain tools and with little 

experience of performing the low-level mathematical processes that are 

necessary without the tool (Nabb, 2010). 

 The instrumental approach to the use of CAS in mathematics teaching and 

learning studies the development of instrumented techniques, where the 

artefact “CAS” is developed into a personal instrument by the student 

(Artigue, 2002; Trouche, 2005). This process is considered bidirectional in 
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the sense that the student modifies and adapts the tool for his or her own 

purposes, while simultaneously being subordinated to the affordances of the 

tool. The instrumented techniques have both pragmatic and epistemic value, 

and the distinction between the two has shown to be insightful in the 

educational analysis of CAS use (Artigue, 2002; Lagrange, 2005). The 

pragmatic value focuses on the productive potential, whereas the epistemic 

value focuses on learning and understanding (Artigue, 2002). The distinction 

between epistemic and pragmatic values of instrumented techniques builds 

on Verillon and Rabardel (1995), as described by Artigue (2002) and 

Trouche (2005). Verillon and Rabardel (1995) draw on the Vygotskian 

concept of mediation, in the sense that they consider instruments as artifacts 

that mediate between user and the objective of the activity. Using this idea, 

the distinction between epistemic and pragmatic mediations is described and 

exemplified with a magnifier and a hammer in the later contribution by 

Rabardel and Bourmaud (2003). (See Misfeldt and Zacho (2016) for a 

thorough description of the instrumental approach with an outset in the 

concept of mediation.)  

 Using the concept of mediation, we can state an important insight from 

the instrumental approach; namely that epistemic mediations are critical for 

CAS to have educational value (Artigue, 2010). However, considering 

proving activities, and in particular students’ reading of proofs in textbooks, 

the distinction between epistemic and pragmatic mediations becomes weaker 

and more blurred. Rather it makes sense to distinguish between three critical 

mediations of CAS (Misfeldt & Jankvist, 2018):  

1. CAS use for justification (justificational mediations), 

2. CAS use for conveying meaning and understanding (epistemic 

mediations), and  

3. CAS use for solving tasks or satisfy other external needs (pragmatic 

mediations).  

 Mediations toward establishing truth are neither clearly epistemic, nor 

only pragmatic, rather they build on the distinction from Hanna (1990) 

between proofs that explain and proofs that (only) prove. Hence, we suggest 

talking about not only epistemic and pragmatic mediations, but also 

justificational mediations when addressing the use of CAS in proof in 

textbooks through the instrumental approach. In our pending analyses, we 

shall rely on these three kinds of mediations along with the notion of proof 

schemes to describe the CAS assisted proofs.  
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Research Method 

As seen in the previously presented table 1, we found use of CAS in 38 

mathematical proofs in textbooks, distributed in ten textbooks. Of these ten 

textbooks, one was for 1st year upper secondary school level, four were for 

2nd year level, and five were for 3rd year level. These books are published 

by three different publishing houses (cf. Appendix A). Looking closely at the 

38 instances of CAS assisted proofs, we have identified three different types 

of such. 

 Type 1 is the complete outsourcing to CAS. We saw an example in figure 

1. In such cases, CAS mainly serve the role of a justificational mediation, 

although pragmatic mediations may play a minor role.  

 Type 2 is the partial outsourcing to CAS. In a partial outsourcing, one or 

several “steps” of the proof is carried out by CAS. Depending on the nature 

of the partial outsourcing - and the purpose of the textbook authors - this may 

serve either one of the three types of mediations. In cases where CAS serves 

as a lever potential, e.g. by directing attention to the overall structure of the 

proof rather than minor details (Ottesen, 2009), epistemic mediations may be 

in play. Pragmatic mediations may also be in play, e.g. by relying on CAS to 

perform trivial computations or checking a given number of possible cases, 

etc. Justificational mediations may occur, say, if a step of a proof relies on 

elements which the students have not yet been taught, or is outside 

curriculum. Any combination of the three types of mediations may of course 

be in play. 

 Type 3 is additional verification by CAS. Often for this type of use, a 

traditional mathematical proof is provided first and then followed by a sort 

of “check” with CAS. This is not unlike the use of CAS to check results as 

part of examples, and in fact it may be a kind of “spillover” from such use of 

CAS in the textbooks. Nevertheless, the phenomenon is so widespread that 

we have decided to regard it as its own specific type of use in relation to CAS 

use in proofs in textbooks. Such a use of CAS first and foremost plays the 

role of a justificational mediation. 
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Table 2.  

The number of instances of CAS assisted proofs in Danish mathematics 

textbooks for upper secondary school according to their type and level. 

 

School 

year 

Type 1 complete 

outsourcing 

Type 2 partial 

outsourcing 

Type 3 additional 

verification 

Year 1 0 1 1 

Year 2 5 9 7 

Year 3 3 3 9 

Total 8 13 17 

 

 Depending on the type of CAS assisted proof and kind of mediations in 

play, this may affect students’ proof schemes - either already possessed proof 

schemes or those in development - in an inexpedient fashion. As we shall 

illustrate with the following analyses, CAS may potentially come to play - 

and be viewed as - an external authority. Hence, from a research 

methodological point of view, the three kinds of mediations (epistemic, 

pragmatic and justificational), building also on the distinction between proofs 

that explain and proves that prove, along with the notion of proof schemes 

make up the theoretical basis for our further empirical analyses of the three 

types of CAS assisted proofs. 

 

Type 1: Complete outsourcing to CAS 

The eight examples of proofs with complete outsourcing to CAS cover proofs 

for the vertex formula for the quadratic function, derivatives of standard 

functions, e.g. exponential functions, power functions, and trigonometric 

functions as illustrated in figure 1.  

 One of the first questions that come to mind when seeing the so-called 

“CAS proof” presented in the introduction (figure 1) is if this is some kind 

of a joke? From a mathematical point of view, it could be interpreted as such. 

Of course, this is not a “proof” - it is a circular reference; the theorem is true, 

because the CAS tool is programmed to say that it is true. However, from a 
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didactical point of view, it may be less funny. Because even though the 

teachers may get the mathematical joke, it is dead certain that there are 

several students who will not. Hence, from a didactical point of view, if this 

“proof” is a joke played on the Danish 2005 reform and its inclusion of CAS, 

it may end up being at the students’ expense. 

 A use of CAS in the manner that it is used to “prove” the differential 

quotients of sine and cosine is one that more or less compromises all of the 

potential functions of mathematical proof (cf. De Villiers, 1990), in particular 

that of explanation (Hanna, 1990). However, CAS does mediate the 

verification of the result. The mediation is not epistemic, since the use of the 

CAS does not explain why sin’(x) = cos(x), nor why cos’(x) = - sin(x). In 

relation to proof schemes this CAS assisted proof simply undermines any 

potential development of a deductive proof scheme on the students’ behalf. 

And worse so, it actually seems to support an external conviction scheme, 

namely that of the authoritarian proof scheme. Only, now it is neither true 

because the teacher nor the textbook says so, but because CAS says so! As 

for the perspectives provided to us from the technology literature, an 

outsourcing of the verification to CAS certainly does not serve as a lever 

potential in this case; everything is completely blackboxed. It does, however, 

ensure that the result will be true. In this way such justificational mediations 

resemble some of the problems in purely pragmatic use of CAS as described 

in the literature. This is similar to Artigue’s (2010) description of CAS use 

for problem solving that only focuses on pragmatic mediations leads to 

educational problems; the same is true for proof practice building on CAS 

only focusing on justificational mediations. 

 

Type 2: Partial outsourcing to CAS 

Of the 13 instances of proofs in textbooks involving partial outsourcing to 

CAS, the majority has to do with simplifying or carrying out algebraic 

manipulations, including e.g. polynomial division. Also, CAS is used to find 

limits (cf. the example below). All of the identified uses are rather pragmatic 

of nature. Only on two instances is CAS used to convey more justificational 

mediations. Once it is used to test if a given function fulfills a differential 

equation, and once it is used to evaluate if two expressions are equal to each 

other. In general, the majority of the partial outsourcings do not potentially 

contribute to enhancing students’ understanding of what may be going on in 
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the proof. We exemplify this through one of the instances relying on CAS to 

find a limit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A CAS assisted proof for the derivative of the natural logarithm 

function (Carstensen, Frandsen & Studsgaard, 2009, p. 164). CAS is activated in 

step 3 (3. trin) to find the limit. 
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 This example also concerns a differential quotient, only this time that of 

the natural logarithm function. The example stems from a 2nd year textbook. 

The proof follows a “template” of what in Danish upper secondary 

mathematics is referred to as the “three-step rule” of differentiation. Now, 

this is not really a “rule”, if anything more a “rule of thumb” to remember 

the steps for examining whether a given function is differentiable. In step 1 

(cf. figure 2), the functional growth, Δy, is expressed, i.e. rewrite f(x) as 

f(x+h) - f(x). In step 2, the difference quotient is expressed by division with 

h. Step 3 is then the evaluation of this expression, i.e. evaluating if Δy/h has 

a limit for h→0, and if so, what this limit is. As seen in figure 2, the textbook 

authors choose to evaluate this limit by means of the “lim” function in CAS, 

which immediately reveals that the differential quotient is 1/x.  

 The two first steps in the example follow a more or less traditional 

approach, while the third outsources all reasoning to CAS - and hence, also 

blackboxes step 3 completely. In the proof as a whole there is an element of 

systematization, since we apply a general procedure (the three-step rule) to 

find the differential quotient of a function. Also, the general structure of the 

proof follows a deductive approach, but with the blackboxing of step 3, the 

use of CAS may come to support an external conviction proof scheme. In 

this part of the proof the potential explanatory power in relation to supporting 

an understanding of why the limit is 1/x is completely suppressed. Of course, 

this can be used as an enacting of the lever potential. A traditional paper-and-

pencil proof typically involves algebraic manipulations including the 

logarithm rules, substitution of variables, as well as calculations with limits. 

Therefore, the outsourcing to CAS does save time and energy for teacher and 

students. But this benefit comes at two expenses: (1) the students never get 

around to consider the details of the limit concept (does the limit even exist, 

and if so how should it be handled and calculated?); and (2) the proof can be 

experienced as an unjustified proof ritual3, because the crucial step of the 

proof is blackboxed, while the structure of the proof is maintained. Clearly, 

this is not unproblematic. The very reason for organizing the proof around 

the three-step rule is to convert the problem into a limit process that can be 

handled algebraically. This may activate two different proof schemes 

simultaneously; a deductive proof scheme, and an external conviction proof 

scheme. The argument is organized in the same way as in a classical algebraic 

proof for the derivative (activating a deductive proof scheme), but we are told 

by CAS what the limit is (activating an authoritarian proof scheme). The 
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three-step rule ends up not being mathematically justified, which 

compromises the entire proof. It must be expected that this does not make 

things any easier for students who already are experiencing trouble 

distinguishing between different forms of mathematical argumentation, as 

pointed out by Dreyfus (1999), and may even add to what Duval (2007) 

termed as status confusion. 

 The CAS use in the proof can be seen as a combination of pragmatic and 

justificational mediations. CAS conducts a laborious job for the teacher and 

students and in that sense, it conducts a pragmatic mediation. Furthermore, 

these calculations ensure the result - a justificational mediation. It is more 

unclear whether CAS mediates epistemically in this example. The knowledge 

and insights that the proof mediates is of course the structure of the proof 

itself (as described above), the fact that the result is established (the 

derivative of ln(x) = 1/x), and - and this is where CAS mediates - that the 

limit of (ln(x - (h/x))/h is 1/x for h → 0. The degree to which this is a 

meaningful epistemic mediation has to do with the extent to which this 

“lemma” conveys a meaningful insight to students. We suggest that this is 

hardly so; for most students the limit is relevant only in the capacity it serves 

in proving the result regarding the derivative of the natural logarithm. If the 

epistemic mediation is weak, as is the case in this example of type 2, and the 

actual value of CAS is found in the pragmatic and justificational mediations, 

then it might be a reasonable question to ask, why the formula is not “proved” 

through a complete outsourcing to CAS (type 1), which also justifies the 

result but in a more efficient way.  

 

Type 3: Additional verification by CAS 

The instances of type 3 mainly concern verification of already calculated 

limits, derivatives, antiderivatives, and solutions to differential equations. In 

the following, we provide an example of the latter. 

 In this example, CAS does not enter into the picture until a traditional 

proof is completed. The theorem (in the textbook referred to as Theorem 2, 

see figure 3) concerns differential equations of the type y’+ay = b and the 

complete solution to these differential equations, where a and b are real 

numbers and a ≠ 0. The proof builds on a previously proven theorem (in the 

textbook referred to as Theorem 1), namely that the solution to differential 

equations of the type y’=ky, where k is any given constant, is of the form y = 
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cekx, where c is an arbitrary constant. The proof as such (cf. figure 3) is a 

fairly straightforward one: firstly rewriting the differential equation 

f’(x)+af(x) = b; then introducing the function g(x) = f(x) - b/a; and eventually 

arriving at an expression the solution of which may be found by relying on 

Theorem 1. The interesting thing, however, is not the traditional proof itself. 

It is the use of CAS once the proof is complete. What the authors do is to 

desolve the general differential equation in CAS, i.e. deSolve(y’+ay = b, x, 

y) - as was also done for Theorem 1, cf. the first line in the CAS screenshot, 

deSolve(y’ = ky, x, y) in figure 3. In fact, they do it frequently throughout the 

textbook, another example is after a traditional proof for the derivative of the 

tangent function.  

 One wonders what the authors intend to achieve by this. Of course, the 

authors’ intentions with the CAS checking practice might be to make 

students’ aware that there are different routes to the verification of results, 

and that taking several of these routes is a way to check your results. But 

from a didactical point of view, one worries what impression this actually 

leaves the students with when using CAS to check theorems that have just 

been proved. 

 One might argue that type 3 is merely a traditional proof augmented with 

a type 1 CAS assisted proof. However, unlike type 1 where CAS served as a 

justificational mediation, CAS in this case plays more the role of a pragmatic 

mediation. There is a difference between checking the theorem itself and 

checking a proof for the theorem for human errors. While justificational 

mediations would concern the former, pragmatic mediations to a higher 

degree address the latter. In the above example CAS is simply used for 

checking for human errors, not to search for mathematical truth or insights. 

From a proof scheme perspective, on the one hand, students may come to 

view CAS as the authority against which the deduced mathematical result is 

checked. Some students may get the impression that the proof is correct, 

because CAS says so - and not that CAS relays the same result, because the 

theorem can be proved (as just done). The role of CAS here appears to be to 

“guarantee” that the result is correct, but without providing any explanation. 

On the other hand, the use of CAS may also be seen as supporting students’ 

empirical proof scheme, since CAS is used to support verification for this 

particular incident (theorem). Whether it is one or the other proof scheme 

that is in play depends on the perception of the student. 
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Figure 3. First the proof, then CAS (Carstensen, Frandsen & Studsgaard, 2007, 

p. 84). 
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Discussion of potential effects of CAS assisted proofs 

If textbooks do a poor job in enabling students to distinguish between 

different forms of argumentation, the job is left entirely to the teachers. Often 

teachers address this by asking students to “explain” and “justify” their 

reasoning (Dreyfus, 1999). But as pointed to in the EMS solid findings 

quotation earlier, this is a task which is related also to the students’ perception 

(or beliefs) of mathematics and what it means to do mathematics. Dreyfus 

says: 
...the requirement to explain and justify their reasoning requires 

students to make the difficult transition from a computational view 

of mathematics to a view that conceives of mathematics as a field of 

intricately related structures. This implies acquiring new attitudes 

and conceiving of new tasks: The central question changes from 

‘What is the result?’ to ‘Is it true that...?’. Students thus need to 

develop new and more sophisticated forms of knowledge. (Dreyfus, 

1999, p. 106) 

 The question from our point of view, of course, is how the introduction of 

CAS into the act of proving may be expected to affect students’ perception 

of explanation and justification in mathematics as well as their understanding 

of mathematical argumentation. 

 In the three different examples of CAS assisted proofs above we have 

witnessed how CAS is used to justify mathematical insights as part of proofs. 

Yet, in all three instances, CAS does essentially not provide any explanation 

(Hanna, 1990) as to why the given theorem, or aspects of it, is true. Although 

to different degrees, in all of our examples the use of CAS appears to support 

an external conviction proof scheme, more precisely the authoritarian proof 

scheme (Harel & Sowder, 2007). In the first example (figure 1) the entire 

process of proving and verification is blackboxed through an outsourcing to 

CAS. In the second example (figure 2) a crucial intermediate step, which 

could potentially involve an explanatory role, is also blackboxed through an 

outsourcing to CAS. Elbaz-Vincent (2005) points out the dangers of using 

CAS to find limits, and further states that “we cannot reasonably use a CAS 

as a black box, in particular in the classroom” because both teachers and 

students need “sufficient knowledge of the behaviour of the CAS in order to 

understand the result for themselves” (p. 63). Perhaps the intention of the 

textbook authors in our second example has been to use CAS as a lever 
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potential, but by attempting so they compromise the explanatory role of 

mathematical proof while transforming CAS from an instrument to 

something resembling a mathematical authority, thus making it unnecessary 

to complete difficult parts of a proof. In the third example (figure 3) CAS 

does not enter into the actual proof, but only when this is complete as a means 

for “checking” the correctness of the already proven mathematical result. The 

intention of the textbook authors could be to endorse a practice where 

students always check their results by use of their CAS tool. An upper 

secondary student already experiencing difficulties with the subject of 

mathematics, may wonder if the theorem is true because CAS says so, or if 

CAS confirms the theorem because we can prove it. Of course, as a 

mathematical philosophical question, this is not so easy to answer due to 

automated theorem provers and experimental mathematics. But regarding the 

cases of very classical mathematics, as we have seen in the CAS assisted 

proofs from upper secondary school textbooks, it might not be a productive 

uncertainty to foster in the mind of the students. Indeed, if some students 

come to believe that CAS is an important mathematical authority, then this 

will affect their conception of mathematical argumentation and the discipline 

as such.  

 So, clearly it matters how CAS is used in relation mathematical proofs in 

the teaching and learning of mathematics: it may interfere with students’ 

perception of the notion of mathematical proof and it may promote certain 

proof schemes over others in the process. Building on the theoretical 

constructs presented by Artigue (2002) and by Rabardel and Bourmaud 

(2003), we have proposed to distinguish epistemic, pragmatic and 

justificational mediations when CAS is used in proving (Misfeldt & Jankvist, 

2018). But how does this relate to the mathematics education theoretical 

constructs on students’ difficulties with proofs and proving? Epistemic 

mediations are connected to proofs that explain (Hanna, 1990), as well as to 

deductive proof schemes (Harel & Sowder, 2007). Justificational mediations 

are related to proofs that only proves, i.e. without explaining. Furthermore, 

such mediations are connected to external conviction proof schemes. If 

statements are true because the CAS says so, CAS mediates a justificational 

process. Pragmatic mediations may be connected to one or more of the 

different proof schemes, including the empirical proof scheme, by providing 

necessary but laborious calculations and manipulations required for a certain 

argument. Let us revisit the three types of identified CAS assisted proofs, 
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keeping in mind that we found 8 instances of type 1, 13 instances of type 2 

and 17 instances of type 3, when going through 33 upper secondary school 

mathematics textbooks (cf. table 1).  

 The first type of CAS assisted proofs involving complete outsourcing to 

CAS concerns establishing and securing mathematical truth rather than 

understanding mathematical relations; it may be considered as a 

justificational mediation providing only “proof”, not explanation. These 

“proofs” are deprived from any real reasoning structure - no real help or 

guidance is provided by the textbooks. And since information about the truth 

of a theorem deprived from structure or explanation is similar to asking an 

external resource/authority, there is a danger that students develop an 

external conviction proof scheme - more precisely an authoritarian proof 

scheme - when working with such CAS assisted proofs in textbooks. 

 The second type of CAS assisted proofs involving partial outsourcing to 

CAS are as such classical deductive proofs, only some of the arguments are 

dealt with by a CAS tool as support for the teachers’ and students’ reasoning 

process. However, the tool is used to allow students to carry out mathematical 

operations, involving reasoning, without necessarily possessing the 

associated mathematical understanding of the objects involved. This was 

exemplified by the CAS assisted proof where CAS was used to find a limit 

in order to work with derivatives - not to understand anything about the limit 

concept. With this in mind, the use of CAS here can be characterized as 

pragmatic. Other examples of pragmatic mediations are when CAS is used 

for polynomial division, etc. as part of a proof. But the use of CAS for partial 

outsourcing may also serve justificational mediations. Previously we 

mentioned two examples of such CAS assisted proofs in textbooks: one 

where CAS was used to evaluate if two algebraic expressions equalled each 

other, and one where CAS was used to test if a given function fulfilled a 

differential equation. As for epistemic mediations, one might imagine a use 

of CAS to draw a graph of, say, y = ln(1+k)/k and even write up a table of its 

functional values to verify numerically that it approaches 1 for k→0. But 

since such a use of CAS still cannot meet the criteria of a deductive proof per 

se, it may bear with it the potential danger of promoting an empirical proof 

scheme with the students. In a similar manner, the justificational mediations 

mentioned above may promote the authoritarian external conviction proof 

scheme. Still, the combination in our displayed example of type 2 (figure 2) 

is the potentially worst which we have come across in the identified CAS 
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assisted proofs of this type. The outer structure of the three-step rule may in 

itself enforce a ritual external conviction proof scheme with the students, 

while the misguided use of CAS as a lever potential in step 3 promotes an 

authoritarian proof scheme. The reason that we regard the use of CAS as a 

misguided lever potential in this case is that it not only blackboxes algebraic 

manipulations, the of logarithm rules, etc., but that it also blackboxes the 

existence of the limit and what this actually is. This is to say that CAS 

blackboxes the involved mathematical reasoning.  

 The third type of CAS assisted proofs are where classical algebraic proofs 

are often augmented by a check that the proof is correct by plotting the 

theorem into CAS. This is a straightforward pragmatic use of CAS as part of 

a proof that has no explanatory intentions, since the aim simply is to check 

the algebraic result. Strictly speaking the proof scheme is authoritarian. 

However, in connection with deductive algebraic proofs the purpose seems 

to be to check the algebraic solution. The idea that more pieces of evidence 

are better than just the one proof can be said to build on an empirical proof 

scheme foreign to mathematics, but the idea of checking results for human 

errors is of course not.  

 As pointed to by Dreyfus (1999), most upper secondary school students 

neither know what a mathematical proof is nor what it is supposed to achieve. 

Certainly, the use of CAS in the three types of identified CAS assisted proofs 

do not seem to promote such understanding. And even if the upper secondary 

students do have some vague idea of the notion of mathematical proof in 

terms of verification (cf. De Villiers, 1990), the displayed use of CAS does 

not appear to clarify the involved processes of the act of proving. With 

reference to Duval’s (2007) two identified failures by students in relation to 

mathematical proving, the use of CAS, as seen above, appears to blur the 

picture as to “status confusion” by potentially expanding already existing 

“gaps of deficiencies in the progress of a proof” (p. 159). In this sense, CAS 

adds yet a component to Dreyfus’ (1999, p. 97) list of disturbing elements 

for students’ conception of proof, i.e. that “more or less formal arguments 

are used, together with visual or intuitive justifications, generic examples, 

and naive induction” and hence CAS furthers the difficulties for students to 

distinguish between these different forms of argumentation and reasoning 

and whether they are all (equally) acceptable.  
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Conclusion and final reflections 

In this article, we have described how CAS is used in Danish upper secondary 

textbooks. We have done so based on a quantitative analysis of 33 textbooks 

and a qualitative analysis of these textbooks’ use of CAS in relation to proofs 

and proving. The result that the didactical use of CAS has some problems 

when it comes to its use in proving in textbooks, does not mean that CAS is 

not a useable tool for learning and working with mathematics. But so far 

research has to a large extent focused on students’ CAS use when working 

on mathematical assignments (Laborde & Strässer 2010; Lagrange 2005; 

Trouche 2005), or the way teaching with CAS is organized, or how it affects 

teachers’ work (see Laborde and Strässer, 2010 for specific references). 

Hence, the use of CAS in institutionalized arguments such as textbook proofs 

has not been thoroughly investigated. This bias is also evident in the main 

constructs of epistemic and pragmatic values that we have relied on 

throughout this article.  

 Our analyses show that the most interesting use of CAS in textbook proofs 

is within the partial outsourcing category (type 2). Such proofs potentially 

adopt the lever potential when outsourcing certain processes to CAS. From 

the analysis of the type 2 example (figure 2) we see that the details of such 

an outsourcing process are important, since there is a risk that mathematically 

critical aspects of a proof is outsourced. However, another problem is that 

the use of lever potential in relation to textbook elements, such as proofs, 

might end up crippling the students mathematically for two reasons. Firstly, 

such use of CAS deprives students the experience of reading mathematical 

texts possible to follow using only their minds. Secondly, it is often the case 

that much more than intentioned is blackboxed when adopting the lever 

potential. In the type 2 example the mathematical reasoning is blackboxed to 

a larger degree than intentioned. Other examples might be blackboxing of 

algebraic skills, which students might benefit from training. Hence, there is 

a risk that the “lever” in the lever potential ends up acting as a “walking 

frame” for the students instead.  

 The results of the analyses in this article can be seen as providing 

guidelines both for practice and for future research. First of all, we see that 

the use of CAS as part of textbook proofs can be a problematic practice, and 

if indeed pursued several issues need to be taken into account. When 

developing textbook proofs that build on CAS, authors need to think about 
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how and to what extent the adoption of the lever potential can lead to CAS 

use that blackboxes critical concepts or reasoning processes. Furthermore, in 

this article we have used justificational mediations. We show the value of 

this construct in our analyses, since it allows us to distinguish important 

differences in how CAS is referred to in proofs in textbooks. However, we 

do only know little about how students experience their use of CAS, in 

proving as well as in problem solving, in the light of this term. Do students 

think about justification, insight and performing mathematical labor as 

different things and how? Is the distinction between epistemic, pragmatic and 

justificational mediations usable to understand CAS use in other elements of 

textbooks than proofs, e.g. use of CAS in examples? Such questions could be 

explored empirically, and that would allow us to see to what extent the 

concept of justificational mediation contribute to mathematics education. It 

is our intention to do so in the future, beginning with the 586 instances of 

CAS use in examples in the Danish textbooks (cf. table 1). 

 In summary, the investigation of this article suggests a potential problem 

with using CAS as an integrated part of deductive mathematical proofs in 

textbooks, the reason being that it appears to promote authoritarian proof 

schemes. Relying on CAS in a justificational manner and being interested 

only in results and not in relations and conceptual issues, goes counter to the 

idea of a deductive proof and may push the students’ argumentation in an 

authoritative direction. Only this authority is not made up by teachers, 

mathematicians, or mathematics textbooks, but by a Computer Algebra 

System and hence promotes a kind of techno-authoritarian external 

conviction proof scheme (Misfeldt & Jankvist, 2018) with the students. If 

students possess such a proof scheme, they may even believe that CAS 

assisted proofs are quite sufficient to establish truth in mathematics. So, not 

only will they not be able to mathematically prove anything, but it may also 

be very difficult to convince them of the fact that they have not. Such a 

techno-authoritarian proof scheme poses, we believe, a major and 

multifaceted issue in the education of future mathematics students.  
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Foodnotes  
 
1The term “CAS proof” (CP) is used by Flynn & MacCrae (2001), with reference to a 
categorization by MacAogáin (2000), in a context of CAS and assessment, but CAS Proof 
here means something very different, since it refers to test items which are CAS Proof (kind 
of like bulletproof), i.e. where the advantage of availability of CAS is minimal or non-existing. 
2 E.g. see: http://i-bog2.dk/bog/gyldendals-gymnasiematematik-a-4200.html#/14  
3 For an elaborate discussion of proof rituals, see Vinner (2007). 
 

References 

 

Appel, K. & Haken, W. (1977). Solution of the four color map problem. 

Scientific American, 237(4), 108-121. Retrieved from: 

https://www.jstor.org/stable/24953967  

Artigue, M. (2002) Learning mathematics in a CAS environment: the 

genesis of a reflection about instrumentation and the dialectics 

between technical and conceptual work. International Journal of 

Computers for Mathematical Learning, 7(3), 245–274. doi: 

10.1023/A:1022103903080 

Artigue, M. (2010). The future of teaching and learning mathematics with 

digital technologies. In: C. Hoyles and J.-B. Lagrange (Eds.), 

Mathematics Education and Technology-Rethinking the Terrain (pp. 

463–475). New York, USA: Springer. 

Borwein, J. (2005). The experimental mathematician: the pleasure of 

discovery and the role of the proof. International Journal of 

Computers for Mathematical Learning, 10, 75-108. doi: 

10.1007/s10758-005-5216-x   

Buchberger, B. (2002). Computer algebra: the end of mathematics? ACM 

SIGSAM Bulletin, 36(1), 3-9. 

Carstensen, J., Frandsen, J. & Studsgaard, J. (2007). Mat A3, stx. Aarhus: 

Systime. 

Carstensen, J., Frandsen, J. & Studsgaard, J. (2009). Mat C til B, stx. 

Aarhus: Systime. 

Clausen, F., Schomacker, G. & Tolnø, J. (2007). Gyldendals 

Gymnasiematematik. Grundbog A. København: Gyldendalske 

Boghandel, Nordisk Forlag A/S.  

Dana-Picard, T. (2005). Some reflections on CAS assisted proofs of 

theorems. International Journal for Technology in Mathematics 

https://www.jstor.org/stable/24953967
https://doi.org/10.1023/A:1022103903080
https://doi.org/10.1007/s10758-005-5216-x


REDIMAT 8(3) 

 

255 

Education, 12(4), 165-171. Retrieved from: 

https://search.proquest.com/docview/203441136?accountid=8194  

De Villiers, M. (1990). The role and function of proof in mathematics. 

Pythagoras, 24, 17-24. 

Dreyfus, T. (1994). The role of cognitive tools in mathematics education. 

In: R. Biehler, R. W. Scholz, R., Strässer and B. Winkelmann (Eds.), 

Didactics of Mathematics as a Scientific Discipline (pp. 201–211). 

Dordrecht, The Netherlands: Kluwer. 

Dreyfus, T. (1999). Why Johnny can’t prove. Educational Studies in 

Mathematics, 38(1-3), 85–109. doi: 10.1007/978-94-017-1584-3_5 

Duval, R. (2007). Cognitive functioning and the understanding of 

mathematical processes of proof. In: P. Boero (Ed.) Theorems in 

school: From history, epistemology and cognition to classroom 

practice (pp. 137-161). Rotterdam: Sense Publishers. 

Education Committee of the EMS (2011). Do theorems admit exceptions? 

Solid findings in mathematics education on empirical proof schemes. 

Newsletter of the European Mathematical Society, 82, 50-53. 

Elbaz-Vincent P. (2005) A CAS as an assistant to reasoned instrumentation. 

In: Guin, D., Ruthven, K. and Trouche L. (Eds.) The Didactical 

Challenge of Symbolic Calculators. Mathematics Education Library, 

vol 36. Boston, MA: Springer. 

Flynn, P. & MacCrae, B. (2001). Issues in assessing the impact of CAS on 

mathematics examinations. Proceedings of 24th Conference of the 

Mathematics Education Research Group of Australasia (pp.  222-

230). Retrieved from: 

https://www.merga.net.au/documents/RR_Flynn&McCrae.pdf  

Hanna, G. (1989). Proofs that prove and proofs that explain. In: G. 

Vergnaud, J. Rogalski and M. Artigue (Eds.), Proceedings of the 

13th Conference of the International Group for the Psychology of 

Mathematics Education, Vol. 2 (pp. 45-51). Paris: CNRS. 

Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 

6-13. 

Harel, G. & Sowder, L. (2007). Toward comprehensive perspectives on the 

learning and teaching of proof. In: F. K. Lester Jr. (Ed.), Second 

Handbook of Research on Mathematics Teaching and Learning (pp. 

805-842). Charlotte, NC: Information Age Publishing. 

https://search.proquest.com/docview/203441136?accountid=8194
https://doi.org/10.1007/978-94-017-1584-3_5
https://www.merga.net.au/documents/RR_Flynn&McCrae.pdf


 Jankvist & Misfeldt–CAS Assisted Proofs  

 

 

256 

 

Hoyles, C. (2014). Solid findings in mathematics education: the influence 

of the use of digital technology on the teaching and learning of 

mathematics in schools. Newsletter of the European Mathematical 

Society, 91, 49-51. 

Hoyles, C., & Lagrange, J. B. (2010). Mathematics education and 

technology: Rethinking the terrain. Berlin: Springer. 

Jankvist, U. T. & Misfeldt, M. (2015). CAS-induced difficulties in learning 

mathematics? For the Learning of Mathematics, 35(1), 15-20. 

Jankvist, U. T., Misfeldt, M. & Aguilar, M. S. (2019). What happens when 

CAS-procedures are objectified? – the case of “solve” and “desolve”. 

Educational Studies in Mathematics, 101(1), 67-81. doi: 

10.1007/s10649-019-09888-5  

Jankvist, U. T., Misfeldt, M. & Aguilar, M. S. (in press). Tschirnhaus’ 

transformation: mathematical proof, history and CAS. In E. Barbin, 

U. T. Jankvist, T. H. Kjeldsen, B. Smestad & C. Tzanakis (Eds.), 

Proceedings of the Eighth European Summer University on History 

and Epistemology in Mathematics Education ESU 8. Oslo 

Metropolitan University. 

Jankvist, U. T., Misfeldt, M. & Marcussen, A. (2016). The didactical 

contract surrounding CAS when changing teachers in the classroom. 

REDIMAT Journal of Research in Mathematics Education, 5(3), 

263-286. doi:  10.17583/redimat.2016.2013 

Johansen, M. W. & Misfeldt, M. (2016). Computers as a Source of a 

Posteriori Knowledge in Mathematics. International Studies in the 

Philosophy of Science, 30(2), 111-127. doi: 

10.1080/02698595.2016.1265862 

Laborde, C. & Strässer, R. (2010). Place and use of new technology in the 

teaching of mathematics: ICMI activities in the past 25 years. ZDM - 

International Journal on Mathematics Education, 42(1), 121–

133.doi: 10.1007/s11858-009-0219-z  

Lagrange, J. (2005). Using symbolic calculators to study mathematics: the 

case of tasks and techniques. In: D. Guin, K. Ruthven and L. Trouche 

(Eds.), The didactical challenge of symbolic calculators: Turning a 

computational device into a mathematical instrument (pp. 113–135). 

New York, NY: Springer. 

https://doi.org/10.1007/s10649-019-09888-5
http://dx.doi.org/10.17583/redimat.2016.2013
https://doi.org/10.1080/02698595.2016.1265862
https://doi.org/10.1007/s11858-009-0219-z


REDIMAT 8(3) 

 

257 

Lavicza, Z. (2010). Integrating technology into mathematics teaching at the 

university level. ZDM - International Journal on Mathematics 

Education, 42(1),105–119. doi: 10.1007/s11858-009-0225-1  

MacAogáin, E. (2000). Assessment in the CAS age: An Irish perspective. 

Paper presented at the 6th ACDCA Summer Academy.  

McEvoy, M. (2008). The epistemological status of computer-assisted 

proofs; Philosophia Mathematica, 16(3), 374–387. 

Misfeldt, M. & Jankvist, U. T. (2018). Instrumental genesis and proof: 

understanding the use of computer algebra systems in proofs in 

textbook. In. L. Ball, P. Drijvers, S. Ladel, H.-S. Siller, M. Tabach 

and C. Vale (Eds.), Uses of technology in K-12 mathematics 

education: Tools, topics and trends (pp. 375-385). Heidelberg: 

Springer Verlag. 

Misfeldt, M. & Zacho, L. (2016). Supporting primary-level mathematics 

teachers’ collaboration in designing and using technology-based 

scenarios. Journal of Mathematics Teacher Education, 19(2-3), 227-

241.doi: 10.1007/s10857-015-9336-5  

Nabb, K. A. (2010) CAS as a restructuring tool in mathematics education. 

In: P. Bogacki (Ed.) Electronic Proceedings of the 22nd 

International Conference on Technology in Collegiate Mathematics 

(pp. 247-259). Retrieved from: 

http://archives.math.utk.edu/ICTCM/v22.html  

Niss, M. (1999). Aspects of the nature and state of research in mathematics 

education. Educational Studies in Mathematics, 40(1), 1-24. doi: 

10.1023/A:1003715913784  

Ottesen, S. T. (2009). Relating university mathematics teaching practices 

and students’ solution processes. PhD Thesis. Tekster fra IMFUFA, 

no. 463. Roskilde: Roskilde University. Retrieved from: 

http://milne.ruc.dk/imfufatekster/pdf/463.pdf  

Rabardel, P. & Bourmaud, G. (2003). From computer to instrument system: 

a developmental perspective. Interacting with Computers, 15(5), 

665–691. 

Steiner, M. (1978). Mathematical explanation. Philosophical Studies, 34, 

135-151. Retrieved from: https://www.jstor.org/stable/4319237  

Trouche, L. (2005). Instrumental genesis, individual and social aspects. In: 

D. Guin, K. Ruthven and L. Trouche (Eds.), The Didactical 

Challenge of Symbolic Calculators: Turning a Computational Device 

https://doi.org/10.1007/s11858-009-0225-1
https://doi.org/10.1007/s10857-015-9336-5
http://archives.math.utk.edu/ICTCM/v22.html
https://doi.org/10.1023/A:1003715913784
http://milne.ruc.dk/imfufatekster/pdf/463.pdf
https://www.jstor.org/stable/4319237


 Jankvist & Misfeldt–CAS Assisted Proofs  

 

 

258 

 

into a Mathematical Instrument (pp. 197–230). New York, NY: 

Springer. 

Tymoczko, T. (1979). Four-color problem and its philosophical 

significance. Journal of Philosophy, 76(2), 57–83.doi: 

10.2307/2025976 

UVM (2013). Bekendtgørelse om uddannelsen til studentereksamen. 

Matematik A, stx, bilag 35. København: Undervisningsministeriet 

(UVM). Retrieved from: 

https://www.retsinformation.dk/Forms/R0710.aspx?id=152507#Bil3

5 

Verillon, P. & Rabardel, P. (1995). Cognition and artifacts: A contribution 

to the study of thought in relation to instrumented activity. European 

Journal of Psychology of Education, 10(1), 77-101. Retrieved from: 

https://www.jstor.org/stable/23420087  

Vinner, S. (2007). Mathematics education: procedures, rituals and man’s 

search for meaning. Journal of Mathematical Behavior, 26, 1–10.doi: 

10.1016/j.jmathb.2007.03.004 

Winsløw, C. (2003). Semiotic and discursive variables in CAS-based 

didactical engineering. Educational Studies in Mathematics, 52(3), 

271-188.doi: 10.1023/A:1024201714126  

 

 

 

 

 

 

 

 

 

 

 

 

Uffe Thomas Jankvist is professor of mathematics education at 

Aarhus University, Denmark.  
 

Morten Misfeldt is professor of mathematics education at University 

of Copenhagen, Denmark.  

 
Contact Address: Direct correspondence concerning this article, 

should be addressed to the author. Postal Address: Danish School of 

Education, Aarhus University, Campus Emdrup, Tuborgvej 164, DK-

2400 Copenhagen NV. E-mail: utj@edu.au.dk  

https://www.jstor.org/stable/23420087
https://doi.org/10.1016/j.jmathb.2007.03.004
https://doi.org/10.1023/A:1024201714126
mailto:utj@edu.au.dk


REDIMAT 8(3) 

 

259 

Appendix A 

Reference CAS in 

proofs 

CAS in 

conceptual 

work 

CAS in 

introductory 

text 

CAS in 

Macros 

CAS in 

examples 

other use of 

CAS 

1. Carstensen, J., Frandsen, J., 

& Studsgaard, J. (2010).Mat C 
stx(2. udgave ed.). Århus: 

Systime. 

0 0 0 2 0 0 

2. Carstensen, J., Frandsen, J., 

& Studsgaard, J. (2009).Mat C 

hhx(3. udgave ed.). Århus: 

Systime. 

0 10 0 18 17 0 

3. Fristrup, D., Nørgaard, S. & 

Rasmussen, E. S. (2010). Mat 

C hf(2. udgave ed.). Århus: 

Systime 

0 9 0 1 0 0 

4. Carstensen, J., Frandsen, J., 

& Studsgaard, J. (2006).Mat C 
til B stx. Århus: Systime. 

9 0 0 2 18 0 

5. Carstensen, J., Frandsen, J., 

Studsgaard, J. (2015).Mat B 

hf(2. udgave ed.). Århus: 

Systime. 

0 0 0 0 0 0 
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Reference CAS in 

proofs 

CAS in 

conceptual 

work 

CAS in 

introductory 

text 

CAS in 

Macros 

CAS in 

examples 

other use of 

CAS 

6. Jensen M. & Marthinus K. 
(2008).MAT B1 htx(2. udgave 

ed.). Århus : Systime. 

0 0 1 4 13 0 

7. Carstensen, J., Frandsen, J., 

Studsgaard, J. (2013).Mat B1 

stx.(3. udgave ed.). Århus: 

Systime. 

0 0 0 0 0 0 

8. Carstensen, J., Frandsen, J., 

Studsgaard, J. (2013).Mat B2 

stx.(3. udgave ed.). Århus: 

Systime. 

0 0 0 0 1 0 

9. Jensen M. & Marthinus K. 

(2007).MAT B2 htx(1. udgave 
ed.). Århus : Systime. 

0 0 0 1 22 0 

10. Carstensen, J., Frandsen, J., 

Studsgaard, J. (2007).Mat B til 

A stx.(1. udgave ed.). Århus: 

Systime. 

3 2 0 0 29 1 
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Reference CAS in 

proofs 

CAS in 

conceptual 

work 

CAS in 

introductory 

text 

CAS in 

Macros 

CAS in 

examples 

other use of 

CAS 

11. Jensen, T & Nielsen M. O. 

(2013).Matema10k - 

Matematik for stx C-Niveau. 

(2. udgave). Frederiksberg C: 

Frydenlund. 

0 0 0 0 1 1 

12. Jensen, T, Jessen, C. & 

Nielsen M. O. 

(2006).Matema10k - 

Matematik for gymnasiet B-

Niveau. (1. udgave). 

Frederiksberg C: Frydenlund. 

0 0 2 0 3 0 

13. Jensen, T, Jessen, C. & 

Nielsen M. O. 

(2006).Matema10k - 

Matematik for hf B-Niveau. (1. 

udgave). Frederiksberg C: 

Frydenlund. 

0 0 1 0 2 0 
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Reference CAS in 

proofs 

CAS in 

conceptual 

work 

CAS in 

introductory 

text 

CAS in 

Macros 

CAS in 

examples 

other use of 

CAS 

14. Jensen, T & Nielsen M. O. 

(2005). Matema10k - 

Matematik for hf C-Niveau. (1. 

udgave). Frederiksberg C: 

Frydenlund 

0 0 0 0 2 1 

15. Axelsen, R & Dalsgaard, O. 

(2016). Matema10k - 

Matematik for hhx B-

Niveau.(1. udgave). 

Frederiksberg C: Frydenlund 

0 1 4 0 4 0 

16. Jensen, T., Jessen, C. & 

Nielsen M. O. (2007). 

Matema10k - Matematik for 

gymnasiet A-Niveau. 

Frederiksberg C: Frydenlund 

1 5 0 0 22 0 

17. Bregendal, P., Schmidt, S. 

N. & Vestergaard, L. (2012). 

Mat B hhx(2. Udgave). Århus: 
Systime. 

1 7 1 0 27 0 
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Reference CAS in 

proofs 

CAS in 

conceptual 

work 

CAS in 

introductory 

text 

CAS in 

Macros 

CAS in 

examples 

other use of 

CAS 

18. Bregendal, P., Schmidt, S. 

N. & Vestergaard, L. 

(2007).Mat A hhx(1. Udgave). 

Århus: Systime. 

0 0 1 5 5 0 

19. Bohnstedt, A., Hansen, B., 

Jensen, M. & Marthinus, K. 

(2008). Mat A htx (1. Udgave). 

Århus: Systime. 

0 0 2 1 7 0 

20. Carstensen, J., Frandsen, J., 

& Studsgaard, J. (2013). Mat 

A1 stx (3. udgave). Århus: 

Systime. 

0 0 1 0 6 0 

21. Carstensen, J., Frandsen, J., 

& Studsgaard, J. (2006).Mat 

A2 stx(1. udgave). Århus: 
Systime. 

5 1 2 0 38 0 

22. Carstensen, J., Frandsen, J., 

& Studsgaard, J. (2007). Mat 

A3 stx (1. udgave). Århus: 

Systime. 

4 0 1 0 35 0 
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Reference CAS in 

proofs 

CAS in 

conceptual 

work 

CAS in 

introductory 

text 

CAS in 

Macros 

CAS in 

examples 

other use of 

CAS 

23. Hansen, H. H., Melin, J., 

Poulsen, N. H. & Weile, J. 

(2011) Matematik C (4. 

udgave) Århus: Systime. 

0 0 0 5 103 0 

24. Antonius, S. Hansen, H. H., 

Melin, J., Nielsen, K. E. & 

Weile, J. (2011) Matematik B 

(3. udgave) Århus: Systime. 

0 0 1 0 12 0 

25. Bregendal, P., Clausen, R., 

Hansen, H. H., Poulsen, N. H. 

og Weile, J. (2003) Matematik 

A (4. udgave). Århus: Systime. 

0 0 1 8 1 0 

26. Grøn, B., Felsager, B., 

Bruun, B. & Lyndrup, O. 

(2011).Hvad er matematik? 

C(1. udgave). København: 
L&R Uddannelse. 

0 3 0 0 25 0 
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Reference CAS in 

proofs 

CAS in 

conceptual 

work 

CAS in 

introductory 

text 

CAS in 

Macros 

CAS in 

examples 

other use of 

CAS 

27. Grøn, B., Felsager, B., 

Bruun, B. & Lyndrup, O. 

(2012). Hvad er matematik? B 

(1. udgave). København: L&R 
Uddannelse. 

0 4 0 0 16 0 

28. Grøn, B., Felsager, B., 

Bruun, B. & Lyndrup, O. 

(2013). Hvad er matematik? A 

(2. udgave). København: L&R 

Uddannelse. 

0 2 3 0 9 0 

29. Madsen, P. (2010). Teknisk 

Matematik (4. Udgave). 

Erhvervsskolernes Forlag. 

0 0 0 0 81 0 

30. Clausen, F., Schomacker, 

G., Tolnø, J. (2017). 
Gyldendals 

Gymnasiematematik – I-bog A. 

Gyldendal  

 

2 0 0 0 34 0 
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Reference CAS in 

proofs 

CAS in 

conceptual 

work 

CAS in 

introductory 

text 

CAS in 

Macros 

CAS in 

examples 

other use of 

CAS 

31. Clausen, F., Schomacker, 
G., Tolnø, J. (2017). 

Gyldendals 

Gymnasiematematik – I-bog 

B1. Gyldendal 

 

9 0 0 0 16 0 

32. Clausen, F., Schomacker, 

G., Tolnø, J. (2017). 

Gyldendals 
Gymnasiematematik – I-bog 

B2. Gyldendal 

 

2 0 3 0 28 0 

33. Clausen, F., Schomacker, 

G., Tolnø, J. (2017). 

Gyldendals 

Gymnasiematematik – I-bog C. 

Gyldendal 
 

2 0 0 0 9 0 

SUM 38 44 24 47 586 3 

 


